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Abstract
Consider a model of partially directed paths from the origin in the square lattice,
constrained to the region between the Y-axis and the line Y = qX, and ending
in a vertex in this line (with coordinates of the form (N,Nq), and where q > 0
is an integer). Such paths are bargraph paths in a q-wedge. In this paper the
adsorption of bargraph paths in the line Y = qX is examined. This model has
generating function gq(t, z) where t is the edge generating variable and z is the
generating variable of visits of the path to the line Y = qX. It is proven that
the model undergoes an adsorption transition at the critical value of zq and that
zq is given asymptotically by

zq =
3q + 4 + log q −

√
log2 q + log q2 + 4

4 + log q −
√

log2 q + log q2 + 4
+ O

(
q

|log q|3
)

.

In other words, zq/q is given to decaying terms. Moreover, adsorbing bargraph
paths in a 1/p-wedge between the Y-axis and the line Y = (1/p)X, where
p > 0 is an integer, are also considered. In these models it is shown that
z1/p � p2/2 log p2 for large p.

PACS numbers: 05.50.+q, 02.10.Ab, 05.40.Fb, 82.35.−x

1. Introduction

Directed and partially directed lattice paths have been used for some decades as simple lattice
models of polymers. These models are simplification of the self-avoiding walk, which is the
most natural lattice model of a polymer [11, 23]. The self-avoiding walk is non-Markovian,
and although many of its properties are now known or have been estimated, it remains a
challenging model, especially in three dimensions; see for example [17]. Recent developments
in Schramm–Loewner excursions (SLE) and conformal invariance have apparently advanced
the understanding of this model in two dimensions [16]. In five and higher dimensions,
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Figure 1. (a) A directed path confined to a wedge. (b) A partially directed path in a wedge. If the
path is constrained to end in the diagonal line, then this is a bargraph path confined to a wedge.

the lace expansion has been used to show that self-avoiding walks have a Gaussian scaling
limit [13].

Models of self-avoiding walks confined to wedges have been studied as a model of a
polymer in a wedge geometry [6, 9, 12], and this model has been approached using conformal
invariance [5]. There are also results for self-avoiding walks in the vicinity of an excluded
needle [4]. Branched polymers [7, 8, 10] and polymer networks [1, 24] have also been studied
in wedge geometries, and their critical exponents have been determined.

The literature on directed models in confined geometries are sporadic. Directed
percolation and directed animals have been considered in wedge geometries [25], and fully
directed paths have been studied recently in a slit geometry [3].

Directed and partially directed paths, in contrast to the self-avoiding walk, are better
understood, and in some cases have been solved exactly. Nevertheless, the models do retain
some of the features and qualities of the self-avoiding walk, and so are a useful laboratory
for examining the properties of models of linear polymers. In this paper, the focus will in
particular be on paths in wedges as a model of a polymer chain in a restricted geometry in two
dimensions.

Fully directed paths in a wedge geometry were examined in [14], and the forces that such
a path exerts when squeezed in a wedge were examined in [15]. In this paper, some of the
techniques in those papers are applied to the more general model of partially directed paths
confined to a wedge. We will in particular focus on a model of bargraph paths in a wedge; this
is a model of partially directed paths in a wedge geometry counted by length and interacting
with the boundary of the wedge, see figure 1. Bargraph paths are closely related to bargraph
polygons [21], which are also a model of a directed vesicle near a wall [2]. The results in this
paper generalize in particular the model in [22] to a certain class of wedge geometries.

In section 2 a model of adsorbing bargraph paths is defined. This is a model of partially
directed paths from the origin in the positive half-plane, but with terminal vertex in the X-axis.
A model of adsorbing bargraph paths is defined by the generating function

gb(t, z) = gb,z =
∑
n>0


∑

v�0

bn(v)zv


 tn, (1)

where bn(v) is the number of bargraph paths of length n and with v vertices (visits) in the
X-axis. The generating function gb,z can be determined in closed form and the critical values
of the edge generating variable t and the visit generating variable z are known: tb = √

2 − 1
and zb = (

√
5 − 1)/2(

√
2 − 1).
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In section 3 the results in section 2 are revisited, but using an approach developed for
directed paths in [14]. This enables one to determine critical points without explicitly solving
for the generating function. This will be a useful technique in analysing bargraph paths in
wedges where one apparently cannot determine the generating function in closed form.

Bargraph paths in a wedge defined by the Y-axis and the line Y = X are examined in
section 4. More generally, a model of bargraphs in a q-wedge formed by the Y-axis and the
line Y = qX, where q is a non-negative integer, is defined. A recurrence relation is determined
for the case q = 1, and the critical value of the visit generating variable z is determined to be
z1 = 5/2.

The full model for general q is examined in section 5. Functional recurrences are
determined to enumerate bargraph paths in q-wedges (these are q-bargraph paths), and I
analyse these to determine the critical value of t; this is the radius of convergence of the
generating function of q-bargraph paths (when z = 1). I derive in particular a set of equations
(see equations (50)–(53)) which may be solved to give tq (the critical value of t) as well as
g∗

q = gq(tq); this is the value of the generating function at the critical point. This turns out to be
finite, similar to the situation observed for Dyck paths in q-wedges (see [14]). The adsorption
critical point zq can be determined from these results, and by solving numerically one may
determine the critical point in this model. This is shown in table 2. Next, an asymptotic
formula is developed for adsorbing q-bargraph paths: the critical point is given by

zq =
3q + 4 + log q −

√
log2 q + log q2 + 4

4 + log q −
√

log2 q + log q2 + 4
+ O

(
q

|log q|3
)

. (2)

This approximation turns out to be very accurate, even for moderate values of q.
In section 7 the adsorption of bargraph paths in 1/p-wedges, where p > 0 is an integer,

is examined. Similar to the case for q-wedges, a set of functional recurrences is determined
from which the critical point can be determined. Solving numerically gave the values in
table 3. The critical point can also be approximated, and it is shown that

z1/p = 1 + (1 + o(1))

[
p(p + 1)/2

1 + log(p(p + 1)/2)

]
exp

(
log(1 + log(p(p + 1)/2))

1 + log(p(p + 1)/2)

)
. (3)

This approximation, while increasingly good for increasing values of p, is not of the same
quality as the estimate in equation (2).

2. Adsorbing bargraph paths

A partially directed path from the origin of the square lattice is a path constrained to step from
the origin by giving steps only in the East, North or South directions, and which cannot make
a South step immediately after a North step, or vice versa. The path never steps West, and it
traces a self-avoiding path with horizontal edges oriented in the East direction. In figure 2(a)

an example of a partially directed path is given. In this example, the path does not visit sites
below the X-axis, but it may do so. If a partially directed path is constrained (1) to have its
terminal vertex in the X-axis, and (2) not to step below the X-axis, then it is a bargraph path
(or a bargraph polygon if it is enumerated by total perimeter length and enclosed area). An
example of a bargraph path is given in figure 2(b). A bargraph path encloses the area in the
square lattice between the X-axis and itself, and bargraph polygons have been used as lattice
models of vesicles [2].
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Figure 2. (a) A partially directed path. (b) A bargraph path.
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Figure 3. Bargraph paths enumerated to length 5 edges. The numbers of these paths are listed in
table 1.
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Figure 4. Every bargraph path is either a single horizontal edge, or it is an arbitrary bargraph path
ending in a horizontal edge, or it is a horizontal edge followed by a primitive bargraph path, or it is
a primitive bargraph path, or it is a primitive bargraph path, followed by a horizontal edge and then
followed by an arbitrary bargraph path; see [20]. Two models of adsorbing bargraph paths can be
defined: either the vertices adsorb in the X-axis with activity or generating variable z, or the edges
adsorb in the X-axis with activity or generating variable ζ . The resulting functional recursions for
the generating functions are given by equations (6) or (7).

The first few bargraph paths are illustrated in figure 3. Let the number of such bargraph
paths of length n be bn. Then b1 = 1, b2 = 1, b3 = 2b4 = 4, b5 = 8, b6 = 16, . . . ,

b40 = 15 499 732 274 689. The generating function

gb(t) :=
∞∑

n=0

bnt
n (4)

of bargraphs paths is known [20], and it can be determined by solving a functional recurrence.
The generating variable of edges is t, and I shall often suppress it by putting gb ≡ gb(t).

A bargraph path is primitive if it has only its first and last vertices in the X-axis, but
otherwise contains only vertices with strictly positive Y-coordinate. By considering primitive
bargraphs paths, and primitive parts of bargraph paths, a recurrence can be determined for the
generating function gb.

Observe that every bargraph path can be classified to belong to one of the five classes.
That is, every bargraph path is either (1) the single edge as in figure 4, or (2) it ends in a
horizontal edge, or (3) its first edge is horizontal, but it is primitive after this edge, or (4) it is
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primitive (its first and last edges are vertical), or (5) it is primitive and returns a first time to
the X-axis (where it must step horizontally), before it continues as an arbitrary bargraph path.
These classes are illustrated in figure 4.

Ignore the labels z and ζ in figure 4. The generating function gb is indicated by semicircular
bubbles and edges joining these together in the five classes are drawn. Noting that edges are
generating by t enables one to write a recurrence for gb:

gb = t + tgb + t3gb + t2gb + t3g2
b. (5)

This recurrence is quadratic in gb; one of the roots will give the generating function of bargraph
paths, with t counting the number of edges in the path.

In a model of adsorbing bargraph paths the number of vertices, or the number of edges, of
the path in the X-axis is also tracked. There are two models of adsorbing bargraph paths. The
first is a model of vertex-adsorbing bargraphs. A visit is vertex of the path in the X-axis, and
I assign the generating variable z to such visits in figure 4. By repeating the above arguments,
and tracking visits, the generating function gb,z in equation (1) of adsorbing bargraphs in the
visit-length ensemble satisfies the recurrence

gb,z = tz2 + tzgb,z + t3z3gb,1 + t2z2gb,1 + t3z2gb,1gb,z. (6)

Observe the notation in this equation: I indicate the visit generating variable z by appending it
as a subscript to gb,z. The generating function gb,1 = gb is the solution of equation (5) when
z = 1.

The second model is obtained when edges of the path in the X-axis are tracked; these are
edge visits, and they will be generated by ζ . The techniques here show that the generating
function gb,ζ of adsorbing bargraph paths in the edge-visit ensemble satisfies the recurrence

gb,ζ = tζ + tζgb,ζ + t3ζgb,1 + t2gb,1 + t3ζgb,1gb,ζ . (7)

One may combine these models in a single adsorbing bargraph path with generating function
gb,z,ζ satisfying the recurrence

gb,z,ζ = tz2ζ + tzζgb,z,ζ + t3z3ζgb,1,1 + t2z2gb,1,1 + t3z2ζgb,1,1gb,z,ζ . (8)

The solutions of the recurrences can be determined by first solving equation (5): the root with
non-negative coefficients is

gb = 1 − t − t2 − t3 −
√

(1 − t4)(1 − 2t − t2)

2t3
. (9)

The radius of convergence of this generating function is given by a branch point when
1 − 2t − 2t2 = 0. This shows that tb = √

2 − 1, and tb is the critical value of the generating
variable t. It also follows that gb(tb) = 1 +

√
2.

It is now possible to solve for gb,z, gb,ζ and gb,z,ζ in terms of gb in equation (9). The
resulting expressions are somewhat complicated and are given by

gb,z = tz2 + t2z2(tz + 1)gb,1

1 − tz(1 + t2zgb,1)
; (10)

gb,ζ = tζ + t2(tζ + 1)gb,1

1 − tζ − t3ζgb,1
; (11)

gb,z,ζ = tz2ζ + t2z2(tzζ + 1)gb,1,1

1 − tzζ − t3z2ζgb,1,1
. (12)
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Figure 5. The radius of convergence of the generating functions gb,z or for gb,ζ , where Z denoted
either z or ζ . For small values of Z, tb is determined by a branch point when the radical vanishes
in the generating function: this shows that tb = √

2 − 1 when Z is small. Increasing Z will give
a regime where tb is determined by a simple pole in gb; the changeover occurs at a value Z = zb

in the model of vertex-adsorbing bargraph paths and for Z = ζb in the model of edge-adsorbing
bargraph paths. The curve gb is non-analytic at this point, and in the thermodynamic picture
signals a phase transition. In these models the critical points are zb = (

√
5 − 1)/2(

√
2 − 1) and

ζb = 1 + 1/
√

2 respectively.

The radius of convergence of these generating functions can be determined by noting that
there is a curve of simple poles when the denominator vanishes. For example, in the case of
gb,z this is given by

tb,z = min{t |t =
√

2 − 1, tz(1 + t2zgb,1) = 1}. (13)

A generic plot of the radius of convergence is given in figure 5.
The free energy in this model is given by Fb(z) = − log tb,z. Fb(z) is a constant for small

values of z (Fb(z) = log(1 +
√

2) = − log tb), but it becomes dependent on z at the solution
of

tbz
(
1 + t2

b zgb,1
) = 1, (14)

since this value of z is obtained when the two functions in the minimum in equation (13) are
equal. In other words, if z = zb is the solution of equation (13), then the point (zb, tb) in
the critical curve of this model separates the radius of convergence tb,z into a part determined
by the branch point in the radical in the generating function gb,1, and a part determined by a
simple pole when the denominator in equation (10) vanishes.

Solving for z in equation (14) gives the critical point

zb =
√

5 − 1

2(
√

2 − 1)
= 1.492 066 . . . . (15)

The critical point can similarly be determined in the edge adsorption model. In particular, the
critical value of ζ is in that case

ζb = 1 + 1√
2

= 1.707 106 . . . . (16)

The general model which includes both a vertex generating variable z and an edge generating
variable ζ also exhibits a critical curve and an adsorption transition. In this case the model
may be analysed in the zζ -plane, and there is a critical curve of adsorption transitions
given by

ζz(z(3 −
√

8) +
√

2 − 1) = 1. (17)
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Figure 6. A plot of the curves in equation (19), where f (t) = 1− t − t2 − t3. (a) The intersections
between these curves give solutions of the recurrence in equation (5) or in equation (18). If t is
increased to tb , then the curves will intersect in exactly one value of g > 0. By determining the
coordinates of this intersection, both tb and gb(tb) = g∗

b can be determined. This gives both the
radius of convergence of gb , and its value at this value of t.

3. Determining the critical point in adsorbing bargraph paths

In section 2, the critical values of z and ζ were determined by solving for the generating
function of bargraphs. In this section, I will briefly review the determination of the critical
points from a different point of view; this was first done for adsorbing directed paths in [14].
Consider first a model of adsorbing partially directed paths with a vertex generating variable z.
The generating function of this model is given by equation (10), and it satisfies the recurrence
in equation (6).

To solve for the critical point zb, the full generating function was determined in the
previous section, and from it the value of zb was determined. A simpler approach can be
followed. The starting point is the recurrence in equation (5). Put this recurrence into the form

t3g2
b = (1 − t − t2 − t3)gb − t. (18)

For fixed values of t, the solutions to this polynomial in gb are given by the intersection of a
parabola with a line in the Yg-plane, given by

Y = t3g2, Y = (1 − t − t2 − t3)g − t. (19)

These curves are plotted in figure 6. In figure 6(a) t is sufficiently small that there are two
points of intersection g = g±

b between the graphs. An examination of the solution shows that
g−

b is the root that enumerates partially directed paths. The radius of convergence tb of gb in
equation (9) can be determined by considering figure 6(b). In this case t has increased to tb,
where there are exactly one solution with gb > 0. For t > tb there are no positive solutions,
so tb is the radius of convergence of gb. Define g∗

b = gb(tb). The value of tb and g∗
b can be

determined by determining the coordinates of the intersection between the two curves.
To determine the point of intersection in figure 6(b), note that the line Y = (1 − t − t2 −

t3)g − t is tangent to the curve Y = t3g2 at the point (g∗
b , Y (g∗

b)) with t = tb. This tangent
has formula

Y = 2t3
b g∗

bg − t3
b [g∗

b ]2 (20)

and this should be compared to the line

Y = (
1 − tb − t2

b − t3
b

)
g − tb. (21)

Since these lines are identical, the result is the pair of equations

2t3
b g∗

b = 1 − tb − t2
b − t3

b , t3
b [g∗

b ]2 = tb. (22)
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path with last edge vertical, or is a primitive 1-bargraph path with last edge horizontal, or is an
arbitrary bargraph path preceded by two edges as shown, or is a primitive bargraph path with last
edge horizontal and followed by an arbitrary bargraph path.

These equations can be solved simultaneously to give

tb =
√

2 − 1 and g∗
b =

√
2 + 1. (23)

The critical value of z can now be determined by considering equation (10). The radius of
convergence of gb,z is given in equation (13), and the critical value of z is found by finding
the infimum of z so that both t = tb and tz(1 + t2zgb,1) = 1. Since t = tb, this implies that
gb,1 = g∗

b in this, and thus

zb = inf
z>0

{z|tz(1 + t2zgb,1) = 1, and t = tb, gb,1 = g∗
b}. (24)

Thus, zb is the solution of

tbz
(
1 + t2

b zg∗
b

) = 1 (25)

and solving this gives the result in equation (15).
The same calculations can be carried out for the model of paths with edge visits generated

by ζ . Since tb and g∗
b are already known, it only remains to consider the recurrence in

equations (7) and (11). It follows that ζb is given by the solution of

ζ
(
tb + t3

b g∗
b

) = 1. (26)

Solving for ζ gives ζb in equation (16).

4. Bargraph paths in a 1-wedge

The q-wedge is defined as the wedge formed by the line y = qX and the Y-axis. A bargraph
path in a q-wedge is a partially directed path in the square lattice from the origin, confined
to the q-wedge, and constrained to end in a vertex in the line Y = qX. A bargraph path in
a 1-wedge is illustrated in figure 1(b). Vertices in the path that are on the line Y = qX are
visits, and observe that if q > 0, then it is not possible to have edge visits as in the model with
recurrence gb,ζ in equation (7). We call a bargraph path in a q-wedge a q-bargraph path.

One may directly enumerate q-bargraph paths, and the first few terms in the series are
listed in table 1 for q = 0, 1, . . . , 5. Observe that q = 0 corresponds to the usual model of
bargraph paths with generating function gb obtained in the previous sections. There are clear
parity effects at work in table 1; if q is odd, then only even length paths are encountered, and
even in the case that q is even the series appears to be initially somewhat uneven due to parity
effects.

1-Bargraph paths can be enumerated by the scheme in figure 7. Define a primitive
1-bargraph path as a 1-bargraph path with its terminal (first and last) vertices in the line
Y = X, but which is otherwise disjoint with this line. One may distinguish between primitive
1-bargraph paths with last edge vertical, or primitive 1-bargraph paths with last edge horizontal.
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Table 1. Bargraph paths in q-wedges.

n 0-wedge 1-wedge 2-wedge 3-wedge 4-wedge 5-wedge

1 1
2 1 1
3 2 1
4 4 3 1
5 8 1 1
6 16 10 3 1 1
7 33 1 1
8 69 36 5 5 1
9 146 13 1

10 312 137 7 7 5 1
11 673 28 1
12 1 463 543 64 31 7 7
13 3 202 48 1
14 7 050 2 219 165 53 9 9
15 15 605 346 36
16 34 705 9 285 329 220 11 11
17 77 511 1 013 61
18 173 779 39 587 1 998 432 13 64
19 390 966 2 273 91
20 882 376 171 369 6 410 1 702 300 96
21 1 997 211 12 130 126
22 4 532 593 751 236 15 823 3 702 587 133
23 10 311 720 41 537 166
24 23 512 376 3328 218 76 574 13 967 979 681

Also observe that the shortest 1-bargraph path has length two edges: a vertical edge followed
by a horizontal edge.

To find a recurrence relation for the generating function of 1-bargraph paths, consider
figure 7. Argue now that each 1-bargraph path is either (1) the shortest 1-bargraph path
of length two edges, or (2) is a primitive 1-bargraph path with last edge vertical, or (3) is
a primitive 1-bargraph path with last edge horizontal, or (4) is composed of the shortest
1-bargraph path of length two edges, followed by an arbitrary 1-bargraph path or (5) finally is
composed of a primitive 1-bargraph path with last edge horizontal, followed by an arbitrary
1-bargraph path. The resulting recurrence for the generating function g1,z is therefore

g1,z = t2z2 + 2t2z2g1 + t2zg1,z + t2zg1g1,z (27)

where g1 = g1,1 is the generating function of 1-bargraphs with z = 1.
By putting z = 1 in equation (27), one obtains

t2g2
1 + (3t2 − 1)g1 + t2 = 0 (28)

and this may be solved to find the generating function for 1-bargraphs:

g1 = 1 − 3t2 −
√

(1 − t2)(1 − 5t2)

2t2
. (29)

This can be verified by expanding and comparing coefficients with the data in table 1.
The radius of convergence can be determined to be t2

1 = 1/5 and the value of the generating
function at this point is g∗

1 = g1(t1) = 1. Alternatively, one may follow the approach in
section 3. In this event consider the pair of curves

Y = t2g2; Y = (1 − 3t2)g − t2, (30)
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Figure 8. Bargraph paths in a q-wedge with last edge horizontal have generating function h0, and
bargraph paths in a q-wedge with last edge vertical are generated by h1.

obtained from the recurrence in equation (28). Finding the tangent to Y = t2g2 at (g∗
1 , Y (g∗

1))

and comparing it with the line T = (1 − 3t2)g − t2 at the critical point (g∗
1 , Y (g∗

1) again gives
the values t2

1 = 1/5 and g∗
1 = 1. Finally, by considering the recurrence in equation (27), the

solution for g1,z is

g1,z = t2z2 + 2t2z2g1

1 − t2z − t2zg1
(31)

and the same arguments as in section 3 show that the critical value of z is the solution of

t2
1 z + t2

1 zg∗
1 = 1. (32)

This proves that

z1 = 5/2. (33)

5. Adsorbing bargraph paths in a q-wedge

5.1. The generating function

Finding the generating functions of q-bargraph paths is somewhat more involved than for the
case of 1-bargaphs discussed above. In order to make progress, we define two generating
functions: let h0 be the generating function of q-bargraph paths with its final edge horizontal,
and let h1 be the generating function of q-bargraph paths with final edge vertically (down)
oriented. These classes of q-bargraph paths are illustrated in figure 8. The first edge in each
of the two classes is necessarily vertical, but the last edge determines the class. Observe that
the class h1 is terminal in the sense that the path cannot be continued from its last vertex. The
full generating function of q-bargraphs is the sum of h0 and h1:

gq = h0 + h1. (34)

In the class of paths in h0 there is a subclass of paths with exactly two visits to the
adsorbing line Y = qX; these visits are necessarily the first and last vertices of the path. This
class are the primitive or prime paths in h0, and they will be denoted by h

†
0. These paths

can be constructed from the shortest q-bargraph path of length q + 1 as illustrated in figure 9:
Consider the lines Y = qX + j for j = 1, 2, . . . , q. Every path in the class h

†
0 has a last

vertex in Y = qX + 1, then a last vertex in Y = qX + 2 and so on until it has a last vertex in
Y = qX + q. It must then return in one step to the line Y = qX.

Consider the last vertex v of the path in Y = qX + j where 1 � j < q. The vertex v is
either the only vertex in this line, or it was preceded by a q-bargraph path from its first entry
into the line. Since the last step in this path must be horizontal, this is generated by a factor
(1 + h0), and the path continues from there by a vertical step to the next line. This pattern is
only broken in the line Y = qX + q: in this case the path makes only one visit v to the line,
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Figure 9. Primitive q-bargraph paths counted by the generating function h0 can be constructed by
taking the shortest q-bargraph path of length p + 1, and then by observing that each of the vertices
indicated by a • can be replaced by a vertex, or by a path generated by h0. The exception is the
vertex labelled by ◦; it can be replaced either by an vertex, or by a path generated by either h0 or
h1. Alternatively, one may instead note that each primitive q-bargraph path has a last vertex in the
line Y = qX + j for j = 1, 2, . . . , p and that it is a q-bargraph path generated by 1 + h0, or by
1 + h0 + h1 at the last vertex in the line.
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Figure 10. Every q-bargraph path counted by h0 is either primitive, or it has a first return to the
line Y = qX followed by an arbitrary q-bargraph path counted by h0. In this case it will be a
primitive q-bargraph up to the first return.

or it is a q-bargraph path from the first visit to this line until its last visit. This is generated by
a factor (1 + gq). The path is then followed by a horizontal step to the line Y = qX. In other
words, the generating function of primitive paths in h0 is given by

h
†
0 = tq+1(1 + h0)

q−1(1 + gq) = tq+1(1 + h0)
q−1(1 + h0 + h1). (35)

Bargraph paths in the class h0 can be decomposed into primitive paths in h0 by a renewal
argument: every path in h0 is either a primitive path in h0 or is composed of a primitive path
followed by an arbitrary path in h0 (see figure 10). In other words

h0 = h
†
0 + h

†
0h0 = h

†
0

1 − h
†
0

. (36)

Next, consider the paths in the class h1. These paths can be constructed by inserting two
vertical edges in the end points of an arbitrary bargraph path, or by appending an arbitrary
bargraph path with two vertical edges at its end point to a path in the class h0. This is illustrated
in figure 11, and the resulting relationship between h1 and gq is

h1 = t2gq + t2h0gq = t2(1 + h0)gq. (37)

In other words, one may express gq in terms of h0, using equation (37):

gq = h0 + h1 = h0 + t2(1 + h0)gq = h0

1 − t2(1 + h0)
. (38)

Observe that in turn

h0 = (1 − t2)gq

1 + t2gq

(39)
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Figure 11. Every q-bargraph path counted by h1 is in one of the two classes below: it is an
arbitrary q-bargraph path translated one step in the Y-direction with two edges added to attach it to
the line Y = qX, and a q-bargraph path in h0 may be prepended to this.

and one may therefore solve for h0 in equations (35) and (36) by noting that gq = h0 + h1:

h0 = tq+1(1 + h0)
q(1 + gq)

= tq+1(1 + h0)
q

(
1 +

h0

1 − t2(1 + h0)

)
. (40)

In other words, h0 is the root of a polynomial of degree q + 1, and from it one may determine
gq by equation (38).

5.2. Critical values of t

Recurrences for the generating functions h0 and gq were determined above. These recurrences
may be put into the form

h0 = T h2
0 + tq+1(1 + h0)

q+1, where T = t2

1 − t2
; (41)

gq = h0

1 − t2(1 + h0)
. (42)

Consider the left- and right-hand sides of equation (41) separately: In particular, fix t and plot
the functions

Y = h; Y = T h2 + tq+1(1 + h)q+1 (43)

on the same hY -plane. Intersections in the graphs of these functions will be solutions to
equation (41). Observe that Y = h is a straight line, while Y = T h2 + tq+1(1+h)q + 1 is convex
for h > 0 and is also non-negative. There are at most two intersections between these
curves, and the typical cases are illustrated in figure 12, where the curve Y = fq(h) =
T h2 + tq+1(1 + h)q+1 intersects the line Y = h in two places and in one place respectively.
Increasing t increases T and so the curvature and rate of increase in the curve in figure 12.
Observe that as t increases, the solutions h± in figure 12(a) move together, and become one
solution h∗

0 = h0(tq) at a critical value of t = tq . For t > tq there are no intersections, and
so no non-negative real solutions of equation (41). Thus, tq is the critical value of t in the
generating function h0, and is its radius of convergence. Note that h∗

0 = h0(tq) is the value of
h0 when t = tq , and that this is finite.

It follows from these arguments that one may determine both tq and h∗
0 by noting that the

line Y = h is tangent to the curve Y = T h2 + tq+1(1 + h)q+1 when t = tq . The tangents to this
curve at h = h∗

0 and t = tq are given by

Y = (
2Tqh

∗
0 + (q + 1)tq+1

q (1 + h∗
0)

q
)
h − Tqh

∗
0 + (1 − qh∗

0)t
q+1
q (1 + h∗

0)
q, (44)
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Figure 12. The functions in equation (43) plotted in the hY -plane. The function Y = T h2 +
tq+1(1+h)q+1 is convex for h > 0. For small values of t the situation is illustrated in (a). There are
two points where the curves intersect; these give the non-negative solutions to equation (41).
Increasing t leads to the situation in (b) where the line Y = h is tangent to the function
Y = T h2 + tq+1(1 + h)q+1 at a critical value of t, say when t = tq . In this case the unique non-
negative solution h = h∗

0 is the only non-negative solution of equation (41). If t > tq , then there
are no non-negative and real solutions.

where Tq is that value of T when t = tq . This line should coincide with Y = h, and thus, tq
and h∗

0 should be the solutions of

2Tqh
∗
0 + (q + 1)tq+1

q (1 + h∗
0)

q = 1; −Tq[h∗
0]2 + (1 − qh∗

0)t
q+1
q (1 + h∗

0)
q = 0. (45)

From the second equation above it follows that

tq+1
q (1 + h∗

0)
q = Tq[h∗

0]2

1 − qh∗
0

. (46)

Substitute this factor into the first of the equations in (45) to obtain

2Tqh
∗
0 + (q + 1)Tq

[h∗
0]2

1 − qh∗
0

= 1. (47)

Thus, one may solve for Tq :

Tq = 1 − qh∗
0

h∗
0(2 + (1 − q)h∗

0)
(48)

and so also obtain an expression for tq in terms of h∗
0. Substitute Tq and tq into the second

equation in (45) and simplify: this gives an expression for h∗
0:

(1 + h∗
0)

q(1 − qh∗
0)

(q+1)/2(2 + (1 − q)h∗
0) = h∗

0(1 + (2 − q)h∗
0 + (1 − q)[h∗

0]2)(q+1)/2. (49)

This equation may be solved for h∗
0, and then Tq and tq may be obtained from equation (48).

This gives the radius of convergence of h0, and the critical value of t for h0. Comparison to the
expression for gq in equation (42) will then give information on the critical value of t for the
generating function tq and on g∗

q = gq(tq).

5.3. Example: q = 1

Recall that h0 is the generating function of bargraph paths as in figure 8(a), and that tq is the
radius of convergence of h0. I have also defined h∗

0 = h0(tq), and this is finite. The function
T = t2/(1 − t2) also has critical value Tq when t = tq , and gq is the full generating function
of bargraph paths, and I also defined g∗

q = gq(tq).
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The relevant set of equations derived above are the following:

h∗
0 = (1 + h∗

0)
q(1 − qh∗

0)
(q+1)/2(2 + (1 − q)h∗

0)

(1 + (2 − q)h∗
0 + (1 − q)[h∗

0]2)(q+1)/2
, (50)

Tq = 1 − qh∗
0

h∗
0(2 + (1 − q)h∗

0)
, (51)

t2
q = Tq

1 + Tq

, (52)

g∗
q = h∗

0

1 − t2
q (1 + h∗

0)
, (53)

as they were derived in equations (49), (48) and (42). Generally, one would proceed by solving
for h∗

0 = h0(tq) in equation (50). This would give the critical values Tq and t2
q , and finally one

can determine g∗
q = gq(tq). It is in particular important in this respect to make sure that the

denominator in equation (53) does not vanish; that proves that the radius of convergence of h0

is also the radius of convergence of gq .
Consider for example the case q = 1; this model was solved in section 4. Putting q = 1

in equation (37) gives

3[h∗
0]2 + h∗

0 − 2 = 0. (54)

Finding the roots of this quadratic gives h∗
0 = 2/3 or h∗

0 = −1, and since h∗
0 > 0; the positive

root is the sought solution. This produces T1 = 1/4 and one obtains the critical value of t1
derived in section 4: t2

1 = 1/5. Finally, observe that the denominator in equation (53) is
1 − t2

1 (1 + h∗
0) = 2/3 �= 0, and that g∗

1 = 1.

5.4. The adsorption critical point

Consider now a model of bargraph paths in a q-wedge with a generating variable z counting
visits in the line Y = qX. Increasing z will take this model through an adsorption transition
at a critical value of z = zq , and I showed in section 4 that z1 = 5/2 for bargraph paths in a
1-wedge.

To determine zq , first find recurrences for the generating functions of bargraph paths with
z included as a generating variable. As before, let h

†
0 be the generating function of primitive

paths in h0. Then by figure 10 and equation (36), the generating function h0,z of adsorbing
paths in the class h0 is given by

h0,z = z2h
†
0

1 − zh
†
0

. (55)

This equation proves that the critical value of z in h0,z is determined by the condition that the
above denominator vanishes.

One may also determine the generating function of adsorbing bargraph paths in the class
h1. Examining equation (37) and figure 11 gives the relation

h1,z = t2z2gq,1 + t2zh0,zgq,1 (56)

for the generating function h1,z of bargraphs paths in the class h1 with generating variable z

for visits to the adsorbing line.
Since the generating function of adsorbing bargraph paths is given by the sum of h0,z and

h1,z, the above equations show that

gq,z = h0,z + t2z2gq,1 + t2zh0,zgq,1. (57)
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Table 2. Critical values for q-paths.

q h∗
0 Tq t2

q g∗
q zq

1 2/3 1/4 1/5 1 5/2
2 0.3937 0.3361 0.2516 0.6063 3.539 9
3 0.2756 0.4341 0.3027 0.4489 4.629 0
4 0.2113 0.5357 0.3488 0.3660 5.731 7
5 0.1713 0.6380 0.3895 0.3149 6.838 9
6 0.1439 0.7400 0.4253 0.2803 7.947 5
7 0.1241 0.8414 0.4569 0.2552 9.056 2
8 0.1091 0.9419 0.4850 0.2362 0.101 6 × 101

9 0.9735 × 10−1 0.1041 × 101 0.5101 0.2212 0.112 7 × 102

10 0.8789 × 10−1 0.1140 × 101 0.5327 0.2090 0.123 8 × 102

15 0.5918 × 10−1 0.1619 × 101 0.6182 0.1714 0.179 0 × 102

20 0.4465 × 10−1 0.2079 × 101 0.6752 0.1516 0.233 9 × 102

50 0.1814 × 10−1 0.4603 × 101 0.8215 0.1109 0.561 1 × 102

102 0.9161 × 10−2 0.8379 × 101 0.8934 0.9306 × 10−1 0.110 16 × 103

103 0.9379 × 10−3 0.6230 × 102 0.9842 0.6305 × 10−1 0.106 72 × 104

104 0.9514 × 10−4 0.4869 × 103 0.9980 0.4868 × 10−1 0.105 12 × 105

105 0.9602 × 10−5 0.3983 × 104 0.9997 0.3977 × 10−1 0.104 142 × 106

106 0.9664 × 10−6 0.3367 × 105 0.99997 0.3363 × 10−1 0.103 4805 × 107

In other words, if zq is the critical value of z in h0,z, then it is also the critical value of z in
gq,z. By equation (55) it follows that

z−1
q = sup

0<t<tq

{
h
†
0

}
(58)

and if one consults equation (36), then

zq = inf
0<t<tq

{
1 + h0

h0

}
. (59)

Since h0 increases with t, this infimum is realized when t = tq in which case h0 = h0(tq) = h∗
0.

Thus

zq = 1 + h∗
0

h∗
0

. (60)

For example, if q = 1, then I computed that h∗
0 = 2/3. Substitution gives z1 = 5/2. This

gives the value also computed in equation (33).
If q > 1, then the set of equations (50)–(53) cannot be solved explicitly, since h∗

0 satisfies
a polynomial of degree greater than 4. For example, if q = 2 then h∗

0 satisfies a polynomial
of degree 11. One may, however, approach the set of equations numerically and in table 2 the
solutions are listed for a number of different values of q rounded to four decimal places.

6. Asymptotics for zq

In equation (50) it was shown that h∗
0 is a solution of the equation

h∗
0 = (1 + h∗

0)
q(2 + (1 − q)h∗

0)

(
1 − qh∗

0

1 + (2 − q)h∗
0 + (1 − q)[h∗

0]2

)(q+1)/2

. (61)
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Assume that that h∗
0 = u/q, substitute this in the above and take the 1/qth power. Then u is a

solution of fq(u) = 0, where

fq(u) =
(

u

q

)1/q

−
(

1 +
u

q

)(
2 +

(1 − q)u

q

)1/q
(

1 − u

1 + (2−q)u

q
+ (1−q)u2

q2

)(q+1)/2q

. (62)

An asymptotic expansion of fq(u) for large q can be determined using a symbolic computation
program such as Maple [19]. This result is that

fq(u) = 1

q

(
log u − log q +

u(u − 2)

2(u − 1)
− log(2 − u) − u

)
+ O

(
1

q2

)
. (63)

Assume that u = 1 + U . Assume that U is small and expand fq(u) in U to obtain

fq(u) = 1

q

(
3U

2
− 1

2U
− 1 − log q + O(U 2)

)
. (64)

Since U is assumed to be small, ignore the O(U 2) and higher order terms, and solve for
fq(u) = 0 to find U0. The result is that

U0 = 1
3 (1 + log q) − 1

3

√
log2 q + log q2 + 4. (65)

For large q one may check that U0 ∼ −1/ log q2, and so the assumption that U is small for
large q is justified.

The function u = 1 + U0 would be the solution of fq(u) = 0 in equation (64) if the
terms of order O(U 2) are ignored (and if the terms of order O(1/q2) in equation (63) are
ignored). To find the order of the error made by these assumptions, assume that u = 1 +U0 + ε

is the solution of fq(u) = 0, where ε is an error term to be determined. Substitute this into
equation (64) to observe that ε = O(1/|log q|2). In other words,

u = 4

3
+

1

3
log q − 1

3

√
log2 q + log q2 + 4 + O

(
1

|log q|2
)

. (66)

Thus, the following asymptotic expression should approximate h∗
0:

h∗
0 = 1

3q

(
4 + log q −

√
log2 q + log q2 + 4

)
+ O

(
1

q|log q|2
)

. (67)

This result allows one to determine zq by using equation (60):

zq =
3q + 4 + log q −

√
log2 q + log q2 + 4

4 + log q −
√

log2 q + log q2 + 4
+ O

(
q

|log q|3
)

. (68)

This result immediately establishes that

lim
q→∞

zq

q
= 1. (69)

Since h∗
0 is given asymptotically by equation (67), one may use it to determine values for

Tq, t
2
q and g∗

q . With increasing q, these asymptotic expressions are surprisingly accurate. For
example, if q = 50 then h∗

0 ≈ 0.0180 and z50 ≈ 56.48, and for q = 100, h∗
0 ≈ 0.009 13

and z100 ≈ 110.55. These values should be compared with the numerical estimates for zq in
table 2. With increasing q the asymptotic estimates become increasingly accurate, for example,
one may check that the asymptotic estimates are z1000 = 1067.65, z10 000 = 10 512.07,

z100 000 = 104 142.62 and z1000 000 = 1034 805.50. These numbers agree increasingly well
with the results in table 2.
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Figure 13. The curves in equation (74) plotted against h � 0. The curve Y = 1
T

−
t1+1/p(1+h)

T
( 1+h

h
)1/p = f1/p(h) is concave for h > 0. The intersections are solutions of

equation (73). For small values of t the solutions are real and the situation is illustrated in
(a). Increasing t eventually gives rise to (b) at a critical value t = t1/p where there is one solution,

and the line Y = h is tangent to the curve Y = 1
T

− t1+1/p(1+h)
T

( 1+h
h

)1/p . For t > t1/p there are no
real and non-negative solutions.

7. Bargraph paths in a 1/p-wedge

In the previous sections, I considered bargraph paths adsorbing in a q-wedge, where q is a
non-negative integer and the q-wedge is defined by the Y-axis and the line Y = qX. The above
methods can be extended to a 1/p-wedge where p > 0 is again an integer, and a 1/p-wedge
is formed by the line Y = X/p and the Y-axis.

By applying the arguments developed in figure 9 to the path of length p + 1 in a 1/p-wedge,
the generating function h

†
p of prime or primitive bargraph paths is given by

h
†
0 = tp+1(1 + h0 + h1)

p, (70)

where h0 and h1 are defined as in figure 8.
The remaining relations are as before: if g1/p is the generating function, then

g1/p = h0 + h1, h0 = h
†
0

1 − h
†
0

, h1 = t2g1/p(1 + h0). (71)

These equations may be massaged to show that

g1/p = h0

1 − t2(1 + h0)
(72)

and h0 is the solution of

h0 = 1

T
− t1+1/p(1 + h0)

T

(
1 + h0

h0

)1/p

, (73)

where as before T = t2/(1 − t2). One may again plot the left- and right-hand sides

Y = h; Y = 1

T
− t1+1/p(1 + h)

T

(
1 + h

h

)1/p

(74)

of this equation against h to study its non-negative solutions. This is done in figure 13. For
small values of t there are generally two non-negative solutions h±

0 , as shown in figure 13(a).
Increasing t shows that there is a critical value t1/p of t where a unique non-negative solution
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h∗
0 is obtained. At this value of t, the line Y = h is tangent to the curve given by the right-hand

side of equation (73) at h = h∗
0.

The tangent at h = h∗
0 and t = t1/p of the curve in equation (74) is given by

Y =
[

t
1+1/p

1/p

pT1/p

] (
1 + h∗

0

[h∗
0]2

)1/p

(1 − p[h∗
0]1/p)(h − h∗

0) +
1

T1/p

− t
1+1/p

1/p (1 + h∗
0)

T1/p

(
1 + h∗

0

h∗
0

)1/p

,

where T1/p = t2
1/p

/(
1 − t2

1/p

)
. Comparison to Y = h at the critical point shows that t1/p and

h∗
0 should be solutions of the equations

t
1+1/p

1/p

pT1/p

(
1 + h∗

0

[h∗
0]2

)1/p

(1 − p[h∗
0]1/p) = 1, (75)

t
1+1/p

1/p (1 + h∗
0)

T1/p

(
1 + h∗

0

h∗
0

)1/p

= 1

T1/p

− h∗
0. (76)

Divide equation (76) by equation (75) to obtain

ph∗
0(1 + h∗

0)

1 − ph∗
0

= 1

T1/p

− h∗
0. (77)

This may be solved for T1/p, t2
1/p and S:

T1/p = 1 − ph∗
0

(1 + p)h∗
0

, t2
1/p = 1 − ph∗

0

1 + h∗
0

, S =
(

1 − ph∗
0

1 + h∗
0

)(p+1)/2p

. (78)

These can be substituted into equation (75) and by simplifying,

(1 − ph∗
0)

p+1 =
(

p

1 + p

)2p

[h∗
0]2(1 + h∗

0)
p−1. (79)

In other words, h∗
0 is a root of a polynomial of degree p + 1, and it should be the smallest

positive root. One may verify that for p = 1 this reduces to 1 − h∗
0 = h∗

0/2 with solution
h∗

0 = 2/3; this is the value obtained in table 2.
The adsorbing model is obtained by inserting the generating variable z in the above

analysis. In that case the full generating function is given by

g1/p,z = h0,z + h1,z (80)

where h0,z and h1,z are defined as before. One may again check that

h1,z = h0,z

1 − t2(1 + h0,z)
(81)

and that h0,z satisfies the recurrence

h0,z = z2h
†
0

1 − zh
†
0

, (82)

where h
†
0 is the generating function of primitive or prime paths in h0. This again shows that

z−1
1/p = sup

0<t<t1/p

{
h
†
0

}
, (83)

similar to equation (58). In other words, by consulting equation (82) with z = 1 or
equation (71), this shows that

z1/p = 1 + h∗
0

h∗
0

, (84)
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Table 3. Critical values for 1/p-paths.

p h∗
0 T1/p t2

1/p g∗
1/p z1/p

1 2/3 1/4 1/5 1 5/2
2 0.3427 0.3060 0.2343 1/2 3.9181
3 0.2209 0.3817 0.2763 1/3 5.5270
4 0.1585 0.4616 0.3158 1/4 7.3079
5 0.1212 0.5421 0.3515 1/5 9.2524
6 0.9658 × 10−1 0.6620 0.3835 1/6 1.1354 × 101

7 0.7931 × 10−1 0.7011 0.4122 1/7 1.3609 × 101

8 0.6661 × 10−1 0.7791 0.4379 1/8 1.6012 × 101

9 0.5695 × 10−1 0.8561 0.4612 1/9 1.8561 × 101

10 0.4938 × 10−1 0.9320 0.4824 1/10 2.5251 × 101

15 0.2797 × 10−1 0.1297 × 101 0.5647 1/15 3.6753 × 101

20 0.1835 × 10−1 0.1643 × 101 0.6216 1/20 5.5498 × 101

50 0.4386 × 10−2 0.3491 × 101 0.7773 1/50 2.2902 × 102

102 0.1382 × 10−3 0.6174 × 101 0.8606 10−2 7.2459 × 102

103 0.2304 × 10−4 0.4236 × 101 0.9769 10−3 4.3404 × 104

104 0.3186 × 10−6 0.3128 × 102 0.9968 10−4 3.1386 × 106

105 0.4063 × 10−9 0.2460 × 103 0.9996 10−5 2.4610 × 108

106 0.4946 × 10−11 0.2022 × 104 0.999 96 10−6 2.0219 × 1010

where h∗
0 = h0(t1/p), similar to equation (60). By solving for h∗

0 numerically, one may
determine t1/p, g∗

1/p = g1/p(t1/p) and z1/p. The results are listed in table 3. Observe that
g∗

1/p = 1/p in this table.
An asymptotic estimate can also be found for z1/p. Proceed by noting that h∗

0 is a root of(
p

p + 1

)2

h2/p(1 + h)1−1/p − (1 − ph)1+1/p = 0. (85)

Put h = a/p and perform an asymptotic expansion of the left-hand side using Maple 9 [19]:

a +
1

p
(a + 2 log a − 2 log p − 2 − (1 − a) log(1 − a)) + O

(
1

p2

)
= 0. (86)

Assume that a → 0+ as p → ∞. Then the above term (1 − a) log(1 − a) can be ignored.
Discard higher order terms and solve the resulting equation for a. This shows that

a = (p + O(1)) e1−W(ep(p+1)/2), (87)

where W(x) is the Lambert W -function. This gives an expression for h∗
0:

h∗
0 = (1 + O(1/p)) e1−W(ep(p+1)/2). (88)

The Lambert W -function has an asymptotic expression for large values of its argument:

W(x) ∼ log x − log log x +
log log x

log x
, (89)

see for example [18]. In other words,

h∗
0 ≈ (2 + O(1/p))

[
1 + log(p(p + 1)/2)

p(p + 1)

]
exp

(
− log(1 + log(p(p + 1)/2))

1 + log(p(p + 1)/2)

)
. (90)

One may substitute equation (90) into (84) to see that

z1/p ≈ 1 + (1 + O(1/p))

[
p(p + 1)/2

1 + log(p(p + 1)/2)

]
exp

(
log(1 + log(p(p + 1)/2))

1 + log(p(p + 1)/2)

)
. (91)
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From this expression, or from equation (88), one may compute estimates of the critical
value z1/p for large p. The results are adequate, but not of the same quality as for
zp given in equation (68). For example, if p = 50, then equation (88) estimates that
z1/50 ≈ 203.10 while equation (91) gives z1/50 ≈ 203.35; the numerical solution in table 3
is z1/50 = 229.0. For p = 1000 the estimates are z1/1000 = 42 901. and z1/1000 = 42 746., and
for p = 1000 000, z1/1000 000 = 2.0218 × 1010 and z1/1000 000 = 2.0162 × 1010.

It appears that the asymptotic formula (91) approximates z1/p well for asymptotic values
of p. Observe that

lim
p→∞

p2h∗
0

log p
= 4. (92)

In the broadest terms, one may claim that h∗
0 ∼ 4p−2 log p with the result that

z1/p ≈ p2

2 log p2
+ 1 + o(1). (93)

This approximation is not accurate for small values of p, but improves with increasing p. For
example for p = 100 it is within 25% of the estimate in table 3, for p = 10 000, within 14%
and for p = 1000 000, within 11%.

8. Conclusions

In this paper, solutions and approximations are presented for a model of bargraph paths in
wedges formed by the Y-axis and the lines Y = qX (q-wedges) or Y = (1/p)X (1/p-wedges),
where p > 0 and q > 0 are integers. A high quality estimate for the critical value of the
visit generating variable z was obtained in q-wedges. However, while the approach to paths
in 1/p-wedges was successful, the problem appears to be more difficult in that case, and the
estimates of the critical point were not accurate.

A similar study for Dyck paths in wedges produced the results zq = q + 1 = z1/q for the
critical values of the adsorption activity z. It appears much more difficult to find estimates of
the critical value of z in q/p-wedges [14]. However, one may determine the entropic force
the paths exert on the wedge explicitly [15]. In the model in this paper the results are more
limited—this model is still not solved for bargraph paths in q- or 1/p-wedges; we do not
have solutions in closed form—only numerical solutions and asymptotic estimates are given
above.

The most notable results are given in equations (68) and (91); these are approximate
expressions for the critical adsorption activity for large p or q. In particular, it appears that

zq ≈
3q + 4 + log q −

√
log2 q + log q2 + 4

4 + log q −
√

log2 q + log q2 + 4
,

z1/p ≈ 1 +

[
p(p + 1)/2

1 + log(p(p + 1)/2)

]
exp

(
log(1 + log(p(p + 1)/2))

1 + log(p(p + 1)/2)

)
. (94)

The expression for zq proved much more accurate than the expression for z1/p. Examination
of the expression for z1/p shows that the exponential factor has a maximum at p = 3, that
it approaches 1 as p → ∞ and is bounded between 1 and 3/2 for all p > 0. In the large
p case, it may be ignored, in which case only the ratio p(p + 1)/2(1 + log(p(p + 1)/2))

survives; this gives the approximation in equation (93). It appears challenging to determine
an expression for zq/p for a model of bargraph paths above the line Y = (q/p)X, but that
remains an interesting and open problem.
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